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The isoperimetric theorem states that: “Among all shapes with an equal area, the circle will be
characterized by the smallest perimeter” which is equivalent to “Among all shapes with equal
perimeter, the circle will be characterized by the largest area.” The theorem’s name derives from
three Greek words: ‘isos’ meaning ‘same’, ‘peri’ meaning ‘around’ and ‘metron’ meaning
‘measure’. A perimeter (= ‘peri’ + ‘metron’) is the arc length along the boundary of a closed
two-dimensional region (= a planar shape). So, the theorem deals with shapes that have equal
perimeters.

History of the theorem

The theorem was already known 900 years BC. An application is found in the story of Dido, as
described in Virgil’s Aneid. Dido was a princess on the run from Tyrus (nowadays Lebanon).
She arrived in North Africa, at a site later known as Carthage (nowadays Tunisia). She wanted to
buy some land from the local ruler, King Jambas. They agreed that she could buy all the land she
could enclose within a bull’s hide. Consequently, Dido had the bull’s hide cut into small strips
and had the strips stitched together. Let’s try to estimate the length of the ribbon used by the
princess. We assume that the bull’s body is shaped like a cylinder, with a diameter of 100 cm and
a length of 200 cm. Since the width of the strips used by Dido did not exceed 0.5 cm, we can
estimate the length for a fixed width of 0.5 cm.  Using our cylinder-shaped bull, we find the
ribbon’s length is 1,257 m, which lies within the range of 1,000 and 2,000 m as reported by
Virgil.

Dido put the ribbon on the ground in a way that it would enclose the maximum area. So Dido
had to solve the isoperimetric theorem!  According to the story, Princess Dido solved the
problem, and acquired 8 to 32 hectares of land. [A hectare is 10,000 m2.] Let’s do the exercise
for a ribbon of length 1,257 m. If the ribbon is placed on the ground in a circle, it will enclose
12.6 hectares. If the ribbon is arranged in a square, it encloses 9.9 hectares. As rectangles with
sides 200x428.5 or 100x528.5 m, the corresponding areas are 8.6 and  5.3 hectares, respectively.
However, Princess Dido used one more trick. Virgil relates that Dido connected the end points of
the ribbon to a straight segment of the Mediterranean coast, so the ribbon formed the shape of a
semicircle. In this way, even a larger area was enclosed, since the sea coast length was added to
the ribbon length. For our ribbon of 1,257 m, this would generate an area of 25.1 hectares, which
lies within the reported range.



Some math …

Let’s demonstrate the theorem for a rectangle and a circle (Figure 1). This is not a real
mathematical proof, but elaboration of this example adequately illustrates the theorem. The area
of the rectangle (AR) is calculated as (a×b); the area of the circle (AC) is calculated as (π×r2),
with π equal to 3.1416. If the shapes have equal areas (AR=AC), the following equation applies:
(a×b)=( π ×r2). Solving this equation for r, one finds r=√(a×b/π). The perimeter of a circle (PC)
is calculated as (2×π×r) . Using a and b instead of r, we find PC=2√(a×b×π).

To prove the isoperimetric theorem, we have to demonstrate that PC is smaller than the
perimeter of the rectangle (PR), which equals 2×(a+b). Hence the inequality to solve is PC<PR,
or, 2√(a×b×π)<2×(a+b). Recall from other math classes that for x,y>0, if x<y, then x2<y2. If we
apply this on our inequality, we find (a×b×π)<(a+b)2. The inequality can be rewritten a2+b2>(π-
2)×a×b. Remember also from math classes that if x>(z×y) and (v<z), then x>(v×y). This applies
for v,x,y,z>0. Considering 2>(π-2), the inequality is proven if a2+b2>2×(a×b). Now, recall that
we compare a rectangle with a circle (Figure 1). For the rectangle let a>b (otherwise it would be
a square). We can write this as a=b+k, with k>0. Substitution of b by (a-k) gives
a2+(a-k) 2>2×a×(a-k). Elaborating this inequality gives k2>0, which is valid for all k>0. So, the
inequality is valid. The circle’s perimeter is smaller that that of a rectangle having equal area.

Now let’s prove the theorem for the alternative formulation. It can be written: AR<AC if
PC=PR. Consequently, the starting point is (2×π×r)=2×(a+b). This generates r=(a+b)/π.
Rewriting AC using a and b, the following inequality should be proven: (a+b)2/π>(a×b). This
inequality can be simplified into (a+b)2>(π×a×b), which was proven earlier. The rectangle and
circle have equal perimeters, and the circle’s area is larger.

Exercise
Consider the shapes in Figure 2. Note that a=2×b for the rectangle and d=2×h for the triangle.
(1) Calculate the perimeters of the shapes, assuming every shape has an area of 1 m2.
(2) Calculate the area of the shapes, assuming every shape has a perimeter of 4 m.
(3) Do the calculations confirm the isoperimetric theorem?

Answers
(1) Rectangle: 4.24 m; Circle: 3.54 m; Triangle: 4.83 m; Square: 4.00 m.
(2) Rectangle: 0.88 m2; Circle: 1.27 m2; Triangle: 0.69 m2; Square: 1.00 m2

(3) The calculations illustrate the isoperimetric theorem. When all shapes have equal areas, the
circle has the smallest perimeter. When all shapes have equal perimeters, the circle encloses the
largest area. In both cases, the circle is followed by the square.  Unlike the triangle and the
rectangle in the example, the square and circle can be described by single parameters (r for the
circle, c for the square). Circles and squares are ‘isodiametric’ shapes (‘isos’ = ‘equal’, ‘dia’ =
‘through’, ‘metron’ = ‘measure’). The circle’s characteristic length is the same when measured in
all directions through the center (the diameter), whereas the square’s characteristic length occurs
in only two perpendicular directions.




